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A4ACT

The determination of residual stresses via x-ray diffraction
is briefly reviewed, with particular emphasis on the triaxial
stress state. A new method is proposed for determining the
general stress tensor, which considerably reduces the variances
of the stresses due to counting statistics and gradients. The
procedure involves a generalized leastrsquare solution of strains
measured at various tilts of the x4ray beam to the sample, and a
set of tilts not heretofore used is recommended to minimize these
errors.K

1. INTRODUCTION

X-ray diffraction can be used to determine stresses by

measuring the changes in interplanar spacing in a crystalline

material. Classical stress determination using x-ray diffraction

assumes a biaxial stress state where the stresses normal to the

surface are zero. This assumption leads to equations from which

the stress along the measurement direction a# may be determined

from the slope of a d versus sin2l plot (Noyan and Cohen 1987).

The angles 0 and t are defined in Figure 1 and d is the

interplanar spacing perpendicular to the L3 axis.

Triaxial stress states cause curvature in the d versus sin2f

plots (Noyan and Cohen 1984). This curvature has been observed

in several experimental studies (D61le and Cohen 1980; Ho et

al. 1983). The presence of a stress normal to the surface, o3,

will cause curvature in d versus sin2j plots while the shear



stresses o13 and a23 produce different curves for negative and

positive f-tilts (f-splitting). D61le and Hauk have extended the

classical stress analysis theory to include the determination of

triaxial stress states (D6lle and Hauk 1976; D61le 1979).

This method uses the average strain for positive and negative

1-tilts versus sin2l at o equal to 00, 450, and 900 to determine

the stresses a01, a22, a33, and a12. The stresses a13 and a23

are determined from plots of the difference in strain for

positive and negative V-tilts versus sin2l.

In this paper a generalized least-squares method of

determining triaxial residual stresses from diffraction data is

presented. Being able to estimate the errors associated with a

measurement is also quite important. Errors due to counting

statistics and stress gradients with the Ddlle-Rauk method have

been investigated by Rudnik and Cohen (1986), Noyan (1983), and

Noyan and Cohen (1980). These errors are investigated for the

generalized least-squares method and it is shown that the method

is less sensitive to errors than the D61le-Hauk method.

2. THEORY

Consider the two coordinate systems in Figure 1. The

P-coordinate system is attached to the sample and is the

coordinate system in which it is desired to measure the stresses.

The L-coordinate system is the laboratory system and is the

system in which the diffraction measurements are made. The two



coordinate systems are oriented with respect to each other by the

angles 0 and #. One may determine the interplanar spacing along

planes perpendicular to the L3 axis, dot, from the position of a

diffraction peak. By knowing the unstressed planar spacing do

one may determine the strain along the L3 axis.

dot - do
e#V = (1)

do.

Noyan (1985) discusses several methods of determining do. Using

tensor transformations the strains in the P-coordinate system may

be related to the stain along the L3 axis as

e = Ei~coszosinzl + t22sin2osin2t +' L33COS2* +
(2)

ti2sin2osinzf + E13cososin2T + L23sinosin2V.

The tij refer to strains in the sample coordinate system while

elf refers to strains measured in the laboratory coordinate

system.

Equation 2 shows that the measured strains, e#1, are linear

with respect to the strains in the sample coordinate system.

Measuring strains in six independent directions is therefore

sufficient to determine the strains tij (Nye 1976). The accuracy __

may be improved by measuring more than six strains e¢y and

determining the strains ctj by a least-squares procedure (Imura

et al. 1962).

To facilitate a matrix formulation of the least-squares ........

procedure the following definitions are made:

" * + I;o
Codes



ci= il f1 (s,j) = coslosinat
t2 = t22 f2 (o,q) = sin2osin2

E3 = £33 f3(0,4) = cos'#
t4 = t12 f4 (0,1) = sin2osin2l
t£ = £13 fs(oV) = cososin2q
to = t23 fW(O,J) = sinosin2.

The residual between the measured and calculated strain along the

L3 axis is

6

ri = t £jfj(i,1i) - et (3)
Jul

The total weighted sum of the squared error, R, for n

measurements of e is then

R = I[ I £fj (t,)] - et 2 1 (4)
1-- var(et) J=1

Each error rt is weighted by the inverse variance associated with

the corresponding strain es . Equations exist for estimating

these variances from the diffraction data (James and Cohen 1977)

as discussed below. Thus, the most reliable measurements are

weighted the most. Taking the partial derivative with respect to

each strain cj and setting them equal to zero to find the

minimum, results in the set of equations:

I [( I tkfk(o,Ui) - et] - 0 . (5)
1=1 k-1 var(ei)

To formulate a matrix equation the B-matrix and E-vector are

defined as

B = (6)
1-1 var(et)

Ej = I etf (o,. It)/var(ei) . (7)
1-1



Provided that the strains are measured at o and V angles that do

not form a singular B-matrix, the strains giving the least

squared error are given by the solution of the equation:

t= E, (8)

or

= B 1 E . (9)

When the strains have been determined the stresses may be

determined from the relations:

1 St
aij = - [tlJ - 6 tj (ElI + C2: + t3)] (10)

S2/2 S2/2 +3S1

where St and S2/2 are the appropriate x-ray elastic constants

(Marion and Cohen 1977; Perry et al. 1984) and 8ij is the

Kronecker delta function. The stresses may also be obtained

directly by substituting o for t and the functions gj for the

functions fj in Equations 6, 7, and 8, where:

g1(,V) = (cos2osin2l)S2/2 - S1
g2(0,f) = (sin 2*sin 2l)S2/2 - Si
g3(O,V) = (cos 2 S)2/2 - Si (11)
g4(0,) = (sin2osin2j)S2/2
g5(oq] = (cososin2f)S2/2
g6(0,1) = (sinosin2V)S2/2

3. COUNTING STATISTICAL ERRORS

An estimate of the errors associated with a measurement is

nearly as important as the measurement itself. In determining

interplanar spacings by x-ray diffraction, intensities at

different points along a diffraction peak are measured to

determine the peak position, 20. The interplanar spacing may



then be determined from Bragg's law. The intensity measurements

are subject to statistical counting error. James and Cohen

(1977) give formulae for determining the error in 20 from the

intensity measurements. Estimates of the errors in 20 can also

be determined from nonlinear least-squares fits of peaks to

analytical functions.

The variance in e is computed from the variance in 20 by

(Rudnik and Cohen 1986):

1 1T ? cose var(20)
var(e) = (--)2(--)2( )2 , (12)

do 180 2sin2o 2

where var(20) is given by the peak location method. The variance

in the strains zj may be calculated from the variance in each of

the measured strains

a bt
var(tc) = I (-)2 var(et) . (13)

The variance in do is not considered here but may also be

included (Rudnik and Cohen 1986). The errors in the measured

strains can be propagated through Equation 9 by using Equation 12

to determine the variance in each of the strains tj

. • f3 (¢i ,Ui )

var(tj) = I ( I B' - )2 var(et) . (14)
1-1 Jal kJ var(el)

The variance in each strain value may be evaluated from Equation

13 and used to propagate the error to the stresses using

Equations 10 and 12. The errors in the measured stresses may

then be estimated from the standard deviations given by the

square roots of the variances



1 S
var(at) = (- - ,)2var(et)

S2/2 S2/2(Su/2 + 3S)
(15a)

Si
+( ,)[var(tJ) + var(tk)

S2/2(S2/2 + 3S1)

i,j,k - 1,2,3

1
var(an) (-)2 var(en) m = 4,5,6 . (15b)

S2 /2

The counting statistical errors for the D611e-Hauk method

and the generalized least-squares method are compared in Table 1.

The diffraction data is taken from sample C3 in D61le and Cohen

(1980). The sample is a normalized plain carbon steel ground

along the P, direction. The results for the D61le-Hauk method

were calculated using the same program that was used for the

calculations in Rudnik and Cohen (1986). The value of do was

assumed to be known exactly. The standard deviations of the peak

positition, 28, were all of the order of 0.0120. These results

show that the propagation of error through a generalized least-

squares method results in improved counting statistical errors

over the D61le-Hauk method. In the generalized least-squares

method each strain measurement et contributes to the

determination of each strain tj to which it is not orthogonal in

Equation 2. This is a more efficient use of the available data

than the D61le-Hauk method and results in the improved counting

statistical errors.

The counting statistical error in Equation 15 depends only

on the errors in ei and not on the actual values. The tensor of



counting statistical errors will thus be independent of the

stress tensor and depends only upon the accuracies to which the

interplanar spacings are measured.

It is possible to optimize ot and ji to minimize the counting

statistical errors so that the measurement time to achieve a

given error may be minimized. Another consideration, however,

is that it is still highly desirable to have a number of V-tilts

along a constant value of o so that d~y versus sin2V plots may .be

made. These plots provide a valuable visual check that the

strains in the sample follow the theory and that the sample was

properly aligned during the diffraction measurements (Noyan and

Cohen, 1987).

Table 2 illustrates a comparison between use of the

"traditional" set of 0 angles 00, 450, and 900 and using the set

of 00, 600, and 1200. The data is a computer simulation for a

steel sample with Cr Ka radiation. Each strain was assumed to

have an error of 0.0001. While the normal stresses have the same

errors, the errors in the shear stresses are reduced by using o

equal to 00, 600, and 1200. Thus a greater precision may be

obtained in the shear stresses by simply using 00, 600 , and 1200

for o instead of 00, 450, and 900.

4. ERRORS DUE TO GRADIENTS

Noyan (1983) and Noyan and Cohen (1984) have examined the

effect of gradients in the stresses on the measurement of

...



stresses by x-ray diffraction. Since the stresses normal to the

surface must be zero at the surface, these stresses must exist as

gradients in the sample. The stresses measured by x-ray

diffraction are averages measured over the penetration depth of

the x-ray beam. In making the measurements, however, the sample

must be tilted at different angles to the x-ray beam which gives

a different sampling depth for each tilt. Thus the stresses form

a different average for each tilt of the sample. Stress

gradients, therefore, lead to curvature (but not O-splitting) in

d versuss sin2V plots and errors in the measured values of the

stresses.

The average stress sampled by an x-ray beam is given by
'4

Jo jij (z) exp(-z/r) dz
(aij > = , (16)

FOo i (z) dz

where z is the depth into the sample and T is given by:

sin 2e - sin2t
T = , (17)

2p sine cost

for V-tilts around the e-axis (V-goniometry) and by:

sine cosf
= , (18)

2p

for f-tilts around an axis parallel to the plane of the

diffractometer (0-goniometry).

If we assume, for instance, stress gradients of the form

aij (z) = oa1 (0) + atj zoi , (19)

the average stress becomes

(aiJ = aiJ(O) + KIJT 3 (20)



where Kuj is a constant. This equation shows that the average

stress sampled by the x-ray beam is a function of T which is a

function of the angle q.

When stress gradients are present, as given for example by

Equation 19, instead of constant stresses as assumed by the

theory, the trigonometric dependence will not be as simple as

given in the above equations for fj (,J) or gj ). There will

be a systematic deviation from the theoretical dependence on 0

and V due to T, which is a function of 1. The averaged stress is

further dependent on the unknown gradient. This systematic

deviation will cause some error in the measured stress values

when Equation 2 is forced to fit the data by any procedure.

To determine the effect and magnitude of these gradient

errors and to determine methods to minimize them, computer

simulations of stress measurements on samples containing stress

gradients were performed similar to those in Noyan (1983) and

Noyan and Cohen (1984).

In the computer simulations the sample was assumed to be

steel and the measurements done with Cr Ka radiation for the 211

diffraction peak at 1560 28 for several different stress

gradients. The stresses in the plane of the sample surface a,,

and a22 were assumed to be uniform. Gradients of the form of

Equation 19 were used to calculate an average stress sampled by

the x-rays for each V-tilt. Equation 18 for 0-goniometry was

used to determine the value of r at each $-tilt. A linear

absorbtion coefficient of p = 0.09 pm-1 was used. The measured

strain values, el, were calculated and these were used to



calculate the measured stresses by the generalized least-squares

procedure. Different I-ranges were tested with s equal to 00,

600, and 1200 in all cases.

Four groups of stress tensors with different gradients were

examined to determine the effects of gradients in the different

components of the stress tensors. The constants, Kuj, were

selected to give a value of stress a32 of about 100 MPa for a

T-range of 00 to 600 except for the second group of stress

tensors for which a33 was zero.

(a) Group I

In group I tensors ofthe form

-400 0 0

0 -400 0

0 0 KTO

were examined for n equal to 1, 2, and 3. Table 3 shows the

results of the computer simulation with different *-ranges for

the measurement while Figure 2 shows the error in the stress oL,

as a function of the measured stress 033 for different values of

n for the V-range 0-600. This data shows that the measured value

of stress ati can be greatly affected by a gradient in 033,

especially for low V-ranges. This table also shows that this

error can be minimized by using high V-ranges.



(b) Group II

Group II tensors were of the form

-400 + KT5  0 0

0 -400 + KTa 0

0 0 0

Here the the gradient was in the stresses alt and a22 and the

stress a33 was absent. Again (see Table 4) the high -range

gives the least error in the normal stresses while the low t-

range gives the greatest error. The nonzero values of 133 are

due to the forced fitting of Equation 2 to the data.

(c) Group III

Combined gradients with tensors of the form

-400 + KiT" 0 0

C= 0 -400 + KiiT", 0

0 0 K3 3 T09

were examined in group III. Both positive and negative Kii were

used since values of Kiu and K33 with the same sign have the

opposite effect on the curvature in a d versus sin 2f plot (Cohen

et al. 1980). Table 5 shows the results from the group III

tensors. When Kii and K33 have the same sign the error in ail

nearly cancels out depending on the P-range. The low V-range

again gives large errors. When Kii and K33 are of opposite sign

SUN



and produce the same curvature in d versus sin2j, the high

f-range again gives the smallest error in ii.

(d) Group IV

To test the effect of combined gradients in C33 and r13 group

IV tensors were of the form

-400 0 K33T

= 0 -400 0

K33T3 0 K33TI

The results of these tests are shown in Table 6. Once again, the

smallest error in the normal stresses is with the high f-range.

The magnitude of o13 decreases with increasing f-range. This is

to be expected as the penetration depth of the x-rays decreases

with I and the high q-ranges sample less of the gradient in 013.

Noyan and Cohen (1984) found that the D61le-Eauk method gave very

sporadic results for a13 depending on the f-range, sometimes

giving the wrong sign. The generalized least-squares method is

much more consistent with respect to these shear stresses and

will give much more reasonable values for them independent of the

I-range.



5. CONCLUSIONS

1) A generalized least-squares method of analyzing

diffraction data to determine triaxial stress states was

presented along with equations to estimate the statistical

counting error associated with the measurements. The calculations

for a typical triaxial stress measurement such as the one in

Table 1 take only a few seconds on a personal computer.

Computation time is therefore insignificant in using this

analysis method and it is well suited for use in an automated

stress measurement system.

2) The d versus sin2* plots are a valuable visual check on

the data and should be used and checked against the results for

reasonableness.

3) The use of o equal to 00, 600, and 1200 will give lower

counting statistical error than the traditional values of 00,

450, and 900 for the shear stresses.

4) High I-ranges minimize the errors in the normal stresses

due to stress gradients in the sample. The shear stresses a,3

and 023 are adequately measured with any V-range, lower I-ranges

sampling more of their gradient. The method will not give the

wrong sign for these stresses as can the D61le-Hauk method.

5) The generalized least-squares method gives lower

statistical counting errors than the D61le-Hauk method, and

smaller errors due to the presence of stress gradients in the

sample.

LM V u w I M I o I
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FIGURE CAPTIONS

FIGURE 1. The coordinate system.

FIGURE 2. Errors due to a gradient in f33
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Table 1.

A comparison of the counting statistical errors in the strain and
stress (MPa) tensors for the D61le-Hauk method and a generalized
least-squares method*.

1.649 -0.139 -0.226 0.088 0.087 0.026

z -0.139 1.721 0.013 jX 10-3 0.087 0.080 0.021 JX 10-3

-0.226 0.013 -1.001 J0.026 0.021 0.064J

539.74 -24.03 -39.15 27.08 15.05 4.58

a -24.03 552.16 2.30 15.05 25.30 3.56

-39.15 2.30 80.41 4.58 3.56 21.97

(a) D61le-Hauk

1.515 -0.045 -0.234 0.036 0.043 0.010

S= -0.045 1.888 0.029 X 10-3  0.043 0.031 0.009 X 10-3

-0.234 0.029 -0.936 0.010 0.009 0.010

527.04 -7.90 -40.48 10.73 7.39 1.72

o = -7.90 591.73 4.99 ± 7.39 9.59 1.53

-40.48 4.99 49.87 1.72 1.53 5.82

(b) Generalized Least-Squares

'The data is from a ground steel sample. Analysis from the D61le-Hauk
method is given in (a) and from a generalized least-squares method
in (b).



Table 2.

A comparison of the counting statistical errors in the strain and
stress (llPa) tensors for the use of (a) 0 = 00, 450, and (b) 900
and o = 00, 600, and 1200 ~

1.308 0.000 0.000 ]0.117 0.117 0.031]

= 0.000 1.308 0.000 X 10-3 0.117 0.117 0.031 X 10-3

0.000 0.000 1.000 J0.031 0.031 0.039J

-400.00 0.00 0.00 35.43 20.24 5.44]

= 0.00 -400.00 0.00 ± 20.24 35.43 5.4 I
0.00 0.00 0.00 5.44 5.44 20.91J

(a) o 00, 450, and 900

1.308 0.000 0.000 0.117 0.078 0.0301

c= 0.000 1.308 0.000 X 10-3± 0.078 0.117 0.030 X 10-3

0.000 0.000 1.000 0.117 0.030 0.039J

-400.00 0.00 0.00 135.43 13.49 5.13

a y 0.00 -400.00 0.00 1 13.49 35.43 5.13

0.00 0.00 0.00 J5.13 5.13 20.91

(b) o 00, 600, and 1200

'The results are a computer simulation for a steel sample measured
with Cr Ka radiation at 29 = 1560. Each strain was assumed to
have an error of 0.0001.



Table 3.

Computer Simulation Results for Group I Stress Tensors.

n33 K3 3 -Range cri 10 3 lal - a ll
(Degrees) (MPa) (MPa) (MPa)

1 22.6764 0.00 - 60.00 -422.6 100.0 22.6
1 22.6764 0.00 - 33.21 -476.0 79.4 76.0
1 22.6764 39.23 - 60.00 -407.5 88.3 7.5

2 5.0243 0.00 - 60.00 -442.8 100.0 42.8
2 5.0243 0.00 - 33.21 -564.2 52.6 164.2
2 5.0243 39.23 - 60.00 -411.5 76.5 11.5

3 1.0920 0.00 - 60.00 -460.7 100.0 60.7
3 1.0920 0.00 - 33.21 -661.6 20.8 261.6
3 1.0920 39.23 - 60.00 -413.2 65.3 13.2

rMaw



Table 4.

Computer Simulation Results for Group II Tensors

nii Ki. -Range 0 IC323 Error in ail
(Degrees) (I4Pa) (MPa) (Ma)

1 10.00 0.00 - 60.00 -366.2 -5.7 33.8
1 10.00 0.00 - 33.21 -337.8 5.2 62.2
1 10.00 39.23 - 60.00 -374.4 0.7 25.6

2 2.50 0.00 - 60.00 -367.7 -10.7 32.3
2 2.50 0.00 - 33.21 -307.5 12.8 92.5
2 2.50 39.23 - 60.00 -383.2 0.9 16.8

3 0.55 0.00 - 60.00 -369.8 -13.9 30.2
3 0.55 0.00 - 33.21 -282.2 20.8 127.8
3 0.55 39.23 - 60.00 -389.9 0.7 10.1



Table 5.

Computer Simulation Results for Group III Tensors

nl Kit n33 K33 W-Range atu a33 ll - all
(Degrees) (MPa) (MPa) (MPa)

1 10.0 2 5.0 0.00 - 60.00 -408.7 93.8 8.7

1 10.0 2 5.0 0.00 - 33.21 -501.3 57.6 101.3
1 10.0 2 5.0 39.23 - 60.00 -385.9 76.9 14.1

2 2.0 2 5.0 0.00 - 60.00 -416.7 91.0 16.7
2 2.0 2 5.0 0.00 - 33.21 -489.4 62.6 89.4

2 2.0 2 5.0 39.23 - 60.00 -398.0 76.9 2.0

1 -10.0 2 5.0 0.00 - 60.00 -476.4 105.2 76.4

1 -10.0 2 5.0 0.00 - 33.21 -625.6 47.1 225.6
1 -10.0 2 5.0 39.23 - 60.00 -437.0 75.4 37.0

2 -2.0 2 5.0 0.00 - 60.00 -468.4 105.1 68.4

2 -2.0 2 5.0 0.00 - 33.21 -637.4 42.1 237.4

2 -2.0 2 5.0 39.23 - 60.00 -424.9 75.4 24.9



Table 6.

Computer Simulation Results for Group IV Tensors

n33 K3 'P-Range Oil a3 3 al 3 cII - 01 1
(Degrees) (MPa) (MPa) (Mpa) (MPa)

2 5.0 0.00 - 60.00 -442.6 99.5 76.6 42.6
42 5.0 0.00 - 33.21 -563.4 52.3 111.2 163.4

2 5.0 39.23 - 60.00 -411.5 76.1 59.2 11.5

2 5.0 0.00 - 26.57 -- -- 121.3 --

2 5.0 33.21 - 45.00 - -80.6 -

2 5.0 50.77 - 60.00 --- 44.2 -

LMjiiil8 1111 1 M 6 M 1U % 1 il
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